Solar Panels: A True Carbon-Free Source of Energy?

“Today I challenge our nation to commit to producing 100 percent of our electricity from renewable energy and truly clean carbon-free sources within 10 years.”

-Al Gore, 2008

Our political leaders have a huge influence in how our population views technologies.  The former statement, while laudable, is distilled to the point of necessitating further analysis.  While the goal of ubiquitous carbon-free energy sources is certainly worth pursuing, it is vital that we do not discount the carbon footprint entailed in the adoption of those sources.

Let’s just take a look at solar photovoltaic (PV) systems. According to [1] and [2], the energy required to make a solar panel (by Siemens-like processes in 2007) was 4354 MJ/m2, which equates to 1210 kWh/m2 of panel produced. If this panel produces about 168 kWh/m2 in a year, then the estimated energy payback time (EPBT*) is about 2.2 years. This is great news.  However, if you then consider the carbon footprint of creating this solar panel and divide it over the panel’s lifetime (~30 years), the aggregate carbon emissions amount to 32 g/kWh produced. Fortunately, given improvements in technology, this value was expected to drop to 24 g/kWh by the end of 2011. So even though solar panels do not release CO2 during their normal operation (because they don’t need fuel to operate), the manufacture of solar panels does have a nontrivial carbon footprint. The upside of the story is that this footprint is still dwarfed by those of coal, oil, and natural gas (see table III below).

Image

Source: [2]

So far, I’ve spoken only of the carbon emissions from the manufacture of PV arrays.  This is only one side of the CO2 payback time equation.  Another vital consideration is the carbon that is displaced by using solar energy in lieu of dirtier energy sources from the existing energy infrastructure — namely, coal and natural gas.  To quantify this carbon offset, one must consider both the energy source that would have been used were it not for the solar panel, as well as the amount of power being displaced by the solar panel.  Furthermore, the amount of power provided by a panel is a function of both its efficiency (largely driven by technology) as well as the solar panel’s environment. For example, according to [3], it would take twice as much time for a panel in the UK than in California to offset the energy used for its production. This is due to California’s favorable sunshine conditions of about 1,700kWh/m2 per year, compared to the UK’s less favorable 700-900 KWh/m2 of solar energy per year.

So, in the end, solar power is a lot cheaper in terms of CO2 emissions and this is why I support their adoption. But it is at times appropriate to recall the famous quip from science fiction author Robert Heinlein: “there ain’t no such thing as a free lunch.”

*“EPBT is defined as the number of years a PV system must operate before it generates sufficient energy to equal the amount it consumed in manufacturing” [1]

References:

[1] P. Zhai and E.D. Williams, “Dynamic Hybrid Life Cycle Assessment of Energy and Carbon of Multicrystalline Silicon Photovoltaic Systems,” accepted for publication by Environmental Science & Technology (Sept.3, 2010).
[2] Y. Jiao, A. Salce, W. Ben, F. Jiang, X. Ji, E. Morey, and D. Lynch, “Siemens and Siemens-like Processes for Producing Photovoltaics: Energy Payback Time and Lifetime Carbon Emissions” JOM, 63 (1) (2011), pp. 28–31. Can be accessed here: http://www.springerlink.com/content/93h4wh6718251270/fulltext.pdf
[3] http://info.cat.org.uk/questions/pv/what-energy-and-carbon-payback-time-pv-panels-uk


Advertisements

2 Comments

by | 15 April 2012 · 9:35 pm

2 responses to “Solar Panels: A True Carbon-Free Source of Energy?

  1. yuxia1234

    When people talk about renewable energy, they always misunderstand the term of “zero emission”. They believe that zero fossil fuel means zero CO2 emission. But the fact is, these renewable energy infrastructures are not black started, they need energy, basically from fossil fuel, to support their work. Thus, it is a really good point to considering about the CO2 emission during the PV manufacturing.
    However, for the manufacturing part of PV, we have to consider another term, “embedded CO2 emissions”. As we know, China has the largest PV manufacturing industry, and most of their production has been exported. They emitted CO2 for the US to develop solar energy, but who will take care of these emissions? The answer is unknown because G-8 Nations fail to agree on Climate Change Plan. The breakdown underscored the difficulty in bridging divisions between developed and developing nations. Thus, when we started to think more comprehensive about CO2 emissions of renewable energy, we should also think about the post-processing of it.

  2. Good to know the detailed CO2 emission information of solar panel. Solar seems to be the best renewable energy, but as you discussed above, still has the problem of emission and pollution.

    For the first statement, 100 percent of renewable energy for electricity is just a dream for us, at least recent two decades. These intermittent energy sources are hard to contol. After all, electricity grids do not just need energy, but high quality usable energy to operate.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s